Secular change of oxygen isotope composition in the solar protoplanetary disk recorded in a fluffy Type A CAI from Vigarano CV3 by Al-Mg chronological study

*Noriyuki Kawasaki¹, Shoichi Itoh², Naoya Sakamoto³, Hisayoshi Yurimoto^{1,3}

1.Natural History Sciences, Hokkaido University, 2.Department of Earth and Planetary Sciences, Kyoto University, 3.Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University

Fluffy Type A Ca-Al-rich inclusions (CAIs) containing reversely zoned melilite crystals are suggested to be direct condensates from solar nebular gas (MacPherson and Grossman, 1984). We conducted an investigation of ²⁶Al-²⁶Mg systematics of a fluffy Type A CAI from Vigarano, named V2-01, with known oxygen isotopic distributions of reversely zoned melilite crystals (Katayama et al., 2012); we also conducted oxygen isotope measurements of coexisting minerals. The oxygen and Al-Mg isotope measurements were conducted using SIMS of Hokkaido University (Cameca ims-1280HR). Petrography suggests that the constituent minerals of V2-01 formed in the following order: first spinel and fassaite enclosed by melilite, then reversely zoned melilite crystals, and spinel and diopside in the Wark-Lovering rim. The spinel enclosed by melilite has 16 O-rich compositions (Δ^{17} O ~ -24‰) and an initial value of $({}^{26}Al/{}^{27}Al)_{a} = (5.6 \pm 0.2) \times 10^{-5}$. The fassaite enclosed by melilite crystals shows variable oxygen isotopic compositions (Δ^{17} 0 ~ -12% and -17%) and plots on an isochron with $({}^{26}Al/{}^{27}Al)_{0} = (5.6 \pm 0.2) \times 10^{-5}$. The oxygen isotopic compositions of reversely zoned melilite showed continuous variations in Δ^{17} O along the inferred direction of crystal growth, suggesting that surrounding nebular gas, during the formation of the reversely zoned melilite, changed from ¹⁶O-poor (Δ^{17} O values larger than -10%) to ¹⁶O-rich (Δ^{17} O ~ -25%). The six reversely zoned melilite crystals show indistinguishable initial ${}^{26}Al/{}^{27}Al$ values with an average $({}^{26}Al/{}^{27}Al)_{a}$ of (4.7 ± 0.3) x10⁻⁵, which is clearly distinguishable from the value of enclosed spinel and fassaite, indicating a younger formation age than the enclosed spinel and fassaite. The spinel and diopside from the Wark-Lovering rim shows ¹⁶O-rich compositions (Δ^{17} O ~ -23%) with (²⁶Al/²⁷Al)₀ = (4.5 ± 0.4) $\times 10^{-5}$. The values of $({}^{26}Al/{}^{27}Al)_{0}$ are consistent with the formation sequence inferred from petrography. The formation period for the V2-01 CAI is estimated to be 0.18 ±0.07 Myr from the difference in initial ²⁶Al/²⁷Al values. These data suggest that the oxygen isotopic composition of solar nebular gas surrounding the CAI changed from ¹⁶O-rich to ¹⁶O-poor and back to ¹⁶O-rich at least recorded as one cycle during the first ~0.2 Myr of Solar System formation.

Keywords: Al-Mg chronology, Ca-Al-rich inclusion, SIMS, oxygen isotopes, solar protoplanetary disk