マントル遷移層の還元反応による脱水融解

Redox dehydration melting of mantle transition zone deduced from the H₂O storage capacity

*芳野 極¹、櫻井 萌²、坂本 直哉³、圦本 尚義⁴ *Takashi Yoshino¹, Moe Sakurai², Naoya Sakamoto³, Hisayoshi Yurimoto⁴

1.岡山大学地球物質科学研究センター、2.東京工業大学地球惑星科学科、3.北海道大学創成研究機構、4.北海 道大学大学院理学研究院 自然史科学部門 地球惑星システム科学分野

1.Institute for Study of the Earth's Interior, Okayama University, 2.Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 3.Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, 4.Department of Natural History Sciences, Hokkaido University

Knowledge of the H_20 storage capacities of minerals forming mantle peridotite provides essential constraints on estimation of H_20 content and the onset of hydrous partial melting in the mantle. In the mantle transition zone, wadsleyite can store significant amount of H_20 in their crystal structures under extremely high oxygen fugacity. However, the H_20 storage capacity has not been determined under the low oxygen fugacity predicted from the mantle transition zone⁷. Here we report that the H_20 storage capacity of wadsleyite in equilibrium with the peridotite assemblage under lower oxygen fugacity is much smaller than that under higher one. Very low H_20 storage capacity of wadsleyite can attribute to the low H_20 activity in the melt. Considering the more reducing state in the deep mantle, dominant speciation of volatile phases is not H_20 but H_2 . Low H_20 activity in the reduced deep mantle requires that H_20 storage capacity in the Earth's mantle is much smaller than that predicted from the maximum H_20 concentration determined under the high oxygen fugacity. The hydrated and oxidised subducted slab will induce "redox dehydration melting" through decrease of oxygen fugacity by the surrounding reduced mantle transition zone. H_20 in the generated melt will be reduced to hydrogen through the oxidation of iron-bearing minerals. Fe-H melt or FeH_x trapping the released hydrogen would become the main carrier of hydrogen into the deep mantle.

キーワード:酸化還元、水の溶解度、脱水 Keywords: redox condition, water storage capacity, dehydration