マントル剪断帯における加水反応に起因したレオロジー弱化:海洋プレートの沈み込み開始との関係 Rheological weakening via hydration reactions in a mantle shear zone: Implications for the initiation of oceanic plate subduction

*平内 健一¹、福島 久美²、木戸 正紀³、武藤 潤³、岡本 敦⁴ *Ken-ichi Hirauchi¹, Kumi Fukushima², Masanori Kido³, Jun Muto³, Atsushi Okamoto⁴

- 1.静岡大学理学部地球科学科、2.静岡大学大学院総合科学技術研究科理学専攻、3.東北大学大学院理学研究科地学専攻、4.東北大学大学院環境科学研究科
- 1.Department of Geosciences, Faculty of Science, Shizuoka University, 2.Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 3.Department of Earth Science, Graduate School of Science, Tohoku University, 4.Graduate School of Environmental Studies, Tohoku University

Plate tectonics on Earth is essential for mantle geochemistry and planetary habitability; however, its initiation remains controversial and previous geodynamic models require a preexisting zone of weakness (average stress less than 30 MPa) in the oceanic lithosphere. Although the operation of grain-sensitive creep (e.g., diffusion creep) causes a reduction in stress, fault strength near the brittle-ductile transition (BDT) remains remarkably high (1500 MPa), even when assuming olivine diffusion creep with an anomalously small grain size (1 μ m) and a slow strain rate (10⁻¹⁵ s⁻¹). Although the oceanic lithosphere is considered to be dry, infiltration of seawater into a preexisting fault zone (e.g., fracture zones) will lead to the formation of hydrous phyllosilicates (e.g., amphibole, serpentine, and talc). To investigate hydration-induced rheological weakening effects on preexisting faults in intra-oceanic settings, we conducted high-pressure friction experiments on peridotite gouge under hydrothermal conditions. We find that increasing strain and reactions lead to the development of localized talc-rich shear zones, which induce an order-of-magnitude reduction in stress. The rate of reaction is strongly dependent on the degree of cataclastic deformation, rather than time.

Our laboratory experiments demonstrate that the operation of frictional-viscous flow, controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicates, leads to a drastic reduction (down to 40 MPa) in the high stresses near the BDT within the oceanic lithosphere. Our results also suggest that the existence of oceans is a prerequisite for the initiation of plate tectonics on terrestrial planets (e.g., Earth); otherwise, stagnant lid convection operates in the mantle (e.g., Venus).

キーワード:海洋マントル、沈み込みの開始、レオロジー弱化、脆性・塑性遷移、摩擦・粘性流動、滑石 Keywords: oceanic mantle, subduction initiation, rheological weakening, brittle-plastic transition, frictional-viscous flow, talc