福島県阿武隈山地の山地森林における林床状況に関連した放射性セシウム 流出量

Radiocesium outflow related to the forest floor conditions in mountainous forest of the Abukuma Mountains, Fukushima

*新里 忠史¹、佐々木 祥人¹、三田地 勝昭¹ *Tadafumi Niizato¹, Yoshito Sasaki¹, Katsuaki Mitachi¹

1. 日本原子力研究開発機構

1. Japan Atomic Energy Agency

はじめに

東京電力福島第一原子力発電所事故に由来する放射性物質のうち、Cs-137は半減期が約30年と長く、今後 長期にわたり分布状況をモニタリングし、その影響を注視していく必要がある.福島県の約7割を占める森林 域については、住居等の近隣の森林や森林内で日常的に人が立ち入る場所での除染等とともに、森林整備と放 射性物質対策の総合的な取組みが進められている[1].本論では、山地森林におけるCs-137の流出特性に林床 状況が及ぼす影響について、福島県の阿武隈山地に分布するアカマツ-コナラ林での調査結果を報告する.

調査地と手法

森林域に降下した放射性セシウムは,降雨を起点とする林内雨や樹幹流及びリターフォールにより林床へ移動し,林床から土壌流出及び表面流に伴い林外へ移動すると考えられる.土壌流出によるCs-137流出は表面流の100倍程度[2]であり,前者に伴う流出がより重要と考えられる.本論では,土壌流出の最初の段階である降雨による土壌粒子の飛散(雨滴侵食)を対象として,斜面下方への放射性セシウム流出量と林床状況の関連を考察する.

観測領域は阿武隈山地に分布するアカマツーコナラ林の西向き斜面であり,面積は約10 m四方である.観測 領域にアカマツはなく,平均樹高8 mのミズナラを主体とした落葉広葉樹が分布する.観測領域の斜面上部は 下草が繁茂し落葉落枝等のリターが堆積する.斜面下部は,下草が除去されリターの堆積した北側及びリ ターが除去され裸地状態の南側に分けられる.斜面の傾斜は27~28度の範囲にある.林床状況が異なる以上 の3領域において,雨滴侵食で飛散する土壌粒子を回収するためのスプラッシュカップを各領域に5台ずつ設置 し,約1ヶ月間の観測を実施した.スプラッシュカップは直径30 cmあり,カップ内側の中央に林床表面が露 出した直径10 cmの孔(内部孔)があけられている.内部孔の林床に雨滴があたり土壌粒子が飛散すると,内 部孔を円形に取り囲み配置された高さ10 cmのトレイに土壌粒子が回収される.回収トレイは,内部の仕切り 板により斜面上方と下方へ飛散する土壌粒子を取り分けられる.スプラッシュカップ外側の林床から土壌粒子 が混入することを防ぐため,同カップの周囲約1 m四方に麻布を敷く対策を施した.落葉落枝等のリターによ る林床の被覆率は,スプラッシュカップの内部孔における林床表面で計測した.土壌粒子の粒径はレーザー回 折式粒径分布測定器により測定した.

同カップで回収した土壌は105℃で24時間の乾燥後, Cs-137濃度を測定した. Cs-137流出量は, スプ ラッシュカップ内部孔の面積, 斜面下方へ移動した土壌の重量とCs-137濃度から算出した. Cs-137流出率 は, 観測領域の近傍における深度20 cmまでの土壌試料の分析値から単位面積あたりのCs-137蓄積量を算出 し, その蓄積量に対するCs-137流出量の百分率とした.

結果

各観測領域における落葉落枝等のリターによる被覆率は、斜面上部で95.4%、斜面下部の北側で48.2%、斜面下部の南側で5.1%であった.これに伴い1 m²あたりの斜面下方への土壌移動量も異なり、斜面上部で8.5 g、斜面下部の水側で11.3 g、斜面下部の南側で21.2 gであった.移動土壌の粒径分布は、観測領域における 林床0-1 cmの土壌粒子と比較し、淘汰が非常に悪くほぼ対称の歪度を示し、粒径に依存した選択的な土壌粒子 の移動は確認できなかった.また、土壌のCs-137濃度から求めた1m²あたりのCs-137流出量は、斜面上部で 523 Bq、斜面下部の北側で295 Bq、斜面下部の南側で710 Bqとなった.ここで、斜面上部と斜面下部におけ る1m²あたりのCs-137蓄積量(上部33 kBq、下部101 kBq)との比較からCs-137流出率を算出すると、下草 が繁茂しリターが堆積する斜面上部では0.5%、下草がなくリターの堆積した斜面下部の北側で0.9%、下草と リターがなく裸地状態である斜面下部の南側では2.1%となった.

以上の結果は、林床の被覆状況が森林域の放射性セシウム流出に関して重要な環境条件であることを示して いる.また、林床の下草や落葉落枝等のリター除去を行うような森林域での除染活動においては、除染後に下 草が繁茂し落葉落枝等が堆積するような環境整備を合わせて実施することが、放射性セシウム移動抑制対策に つながることを示すと考えられる.

[1]環境省,森林の除染等について. http://josen.env.go.jp/about/efforts/forest.html [2]Niizato et al., 2016, J. Environ. Radiact. 161, 11-21.

キーワード:放射性セシウム、山地森林、東京電力福島第一原子力発電所事故 Keywords: radiocesium, mountainous forest, TEPCO' Fukushima Dai-ichi nuclear power plant accident

アンモニウム型モンモリロナイトの膨張・変質挙動 Expansion and alteration behaviors of NH₄-montmorillonite

*川喜田 竜平¹、齋藤 彬人¹、佐久間 博²、安楽 総太郎³、小田 治恵³、三原 守弘³、佐藤 努⁴ *Ryohei Kawakita¹, Akito Saito¹, Hiroshi Sakuma², Sohtaro Anraku³, Chie Oda³, Morihiro Mihara³ , Tsutomu Sato⁴

北海道大学大学院工学院、2.物質・材料研究機構、3.日本原子力研究開発機構、4.北海道大学大学院工学研究院
Graduate school of engineering, Hokkaido University, 2. National Institute for Material Science, 3. Japan Atomic Energy Agency, 4. Faculty of engineering, Hokkaido University

Bentonite will be used as a buffer material in the geological disposal of radioactive waste due to the high swelling and cation exchange capacity of the main bentonite constituent Na-montmorillonite (Na-MMT). Replacement of the interlayer Na by other cationic species, however, can cause a significant reduction in the swelling behavior of MMT. Nitrate salts found in transuranic wastes can be reduced to form NH_4^+ in deep underground conditions. NH_4^+ ions could replace the interlayer Na cations of Na-MMT to form NH_4^- -MMT, but the swelling behavior of NH₄-MMT is not well known.

To improve understanding of the swelling behavior of NH_4 -MMT, the expandability of a suite of homoionic MMT, including Na-MMT, K-MMT, Cs-MMT, and NH_4 -MMT were investigated by XRD under controlled relative humidity (RH) conditions and supported by molecular dynamics (MD) calculations.

Differences in the swelling behavior of the suite of homoionic MMT were observed by XRD and could be largely explained in terms of the valence, the radius and the hydration energy of the interlayer cations. All these properties, however, are very similar for K⁺ and NH₄⁺ and so could not be used to explain the reduced swelling of K-MMT compared to NH₄-MMT under low RH conditions. Although it has been well known that K-MMT lost expandability by dehydration, it has not been well known whether this process would occur on NH₄-MMT or not.

First-principles MD calculations were conducted in a previous study (Shi et al., 2013) for NH_4 -MMT containing only a small number of water molecules (less than 1.25 molecules per NH_4 -MMT half unit cell). The hydrogen bonding and the network between the surface oxygen, interlayer NH_4^+ ion and water were reported to be increased by adding more water molecules to the interlayer. The basal spacing measured by XRD under controlled RH in the current study are consistent with the interlayer containing less than one layer of water, although the interlayer charge may be different between samples. It is also difficult to make direct comparisons with Shi et al.'s calculations and experimental results because the number of water molecules in the interlayer cannot be precisely controlled experimentally.

The classical MD simulations in the current study described the mixing enthalpy of MMT / water molecules system by including the number of interlayer water molecules as a variable. The potential functions and parameters of MMT and water molecules proposed by Nakano and Kawamura (2006) and Kawamura (2008) were employed in this study. Parameters on NH₄⁺ are determined to reproduce NH₄Cl structure. The mixing enthalpy was used as an index to evaluate the swelling state stability. To consider the RH effect, the mixing enthalpy (H_{mix}) was calculated by: H_{mix}=H_(MMT+nH2O)-(H_{MMT}+n μ_{H2O}), where the chemical potential of water, μ_{H2O} includes the effect of RH by: $\mu_{H2O} = \mu^0 + RT \ln(P/P_0)$ (μ^0 :standard chemical potential, *R*:gas constant, *T*:temperature(K), P₀/P:partial pressure of water) The minimum of H_{mix} indicates the stable hydration state of the MMT. In this study, *n* = 0 to 20 water molecules were added to homoionic MMT to understand the different swelling behavior of K-MMT and NH₄-MMT under each RH condition. It was found that the series of calculated mixing enthalpy was consistent with the XRD results under controlled RH. In the NH₄-MMT system, the hydrogen bond between NH₄⁺ and surface oxygen on clay was confirmed from the radial distribution function. These hydrogen bonds make large basal spacing

of NH_4 -MMT rather than that of K-MMT at 0%RH, which lead to hydration at low RH condition compare to K-MMT because the expansion of smectite occurs when hydration of interlayer cation exceeds the electrostatic attraction between silicate layer and cation. This result indicates that NH_4 -MMT is more difficult to become non-expandable or less expandable mineral than K-MMT. This study was partly funded by the Ministry of Economy, Trade and Industry of Japan through "The project for validating assessment methodology in geological disposal system" in JFY 2016.

キーワード:膨潤、変質、アンモニウム、カリウム、モンモリロナイト、分子動力学 Keywords: Expansion, Alteration, Ammonium, Potassium, Montmorillonite, Molecular Dynamics

高アルカリ環境におけるマグネシウムケイ酸塩鉱物の生成とその地球化学 モデリング

Formation of magnesium silicates and its geochemical modeling at high alkaline conditions

*長谷 東子¹、佐藤 努² *Haruko Hase¹, Tsutomu Sato²

1. 北海道大学大学院工学院、2. 北海道大学工学研究院

1. Graduate School of Engineering, Hokkaido University, 2. Faculty of Engineering, Hokkaido University

In geological disposal of waste generated from reprocessing of spent fuel, a large amount of cement material is used for vitrified waste and grout, and the disposal site is predicted to be a high alkaline environment over time. Therefore, it is urgent to understand radionuclides migration and alteration of the barrier materials under high alkaline environment. In general, most mineral surfaces are negatively charged under high alkaline conditions. Therefore, negatively charged anions are poorly adsorbed to the mineral surface. Although the nuclide is considered to be poorly adsorbed in the safety assessment, the nuclide would be delayed by the dynamic processes such as precipitation and solid solution formation without adsorption. For example, layered double hydroxides (LDH), calcium silicate hydrate (C-S-H) and magnesium silicate hydrate (M-S-H) with positively charged surface and a high anion exchange capacity even at a high alkaline environment (Goh, Lim, and Dong 2008)'(Evans 2008). In this context, the objective in this study is to clarify the Mg-bearing phases produced by mixing the interstitial water of cement (high alkaline) and the groundwater of Mg-HCO₃ system in the geological disposal environment. For formation of LDHs, 50 mM of each of Mg ion solution $(Mg(NO_3)_2 \cdot 6H_2O)$, Al or Fe ion solution $(Al(NO_3)_2 \cdot 6H_2O)$ $_{3}$ · 9H₂O or Fe(NO₃)₃ · 9H₂O), and silicate anion solution(Na₂SiO₃) as an initial solution was mixed with different ratios. After the mixing, these mixed solutions were adjusted to pH 9 or pH 12 and left at 25 $^\circ$ C for 24 hours. The reason for paying attention to silicate ions is that they are concerned about dissolution from cement materials and vitrified bodies used in waste disposal and considered to be analogues of ⁷⁹Se and ⁹⁹Tc.

In Mg-Al system, at pH 9, in the case of adding above 15 mM silicate ions, M-S-H and amorphous aluminium (with Al ion), or M-S-H and smectite (without Al ion) were precipitated. On the other hand, in the case of below 15 mM silicate ions, LDH (Mg/Al 0.5) and gibbsite or boehmite (Mg/Al 0.5) were precipitated At pH 12, in the case without Al ion and with Mg ion, brucite was confirmed. Moreover, M-S-H (Mg/Al 0.1) or LDH (Mg/Al 0.3) instead of gibbsite and boehmite were generated. In other systems, no change was observed with the precipitates at pH 9.

In Mg-Fe system, formation of LDH was confirmed in a system containing less silicate ion and much Mg ion, but ferrihydrite or M-S-H was precipitated in other systems containing Fe ion.

In order to investigate these results thermodynamically, by calculating and incorporating M-S-H and LDH database based on previous study(Hase et al. 2017), we could represent thermodynamically precipitated mineral species.

キーワード:マグネシウムケイ酸塩、層状複水酸化物 Keywords: magnesium silicate, layered double hydroxide

Background of assessing geological materials for a potential low and intermediate level radioactive waste repository in Bangladesh

*Mohammad Rajib¹, Chiaki T. Oguchi², Md. Golam Rasul¹, Ratan Kumar Majumder¹, Md. Ibrahim Khalil¹, Mohammad Zafrul Kabir¹, Farah Deeba¹, Md. Moniruzzaman¹

1. Bangladesh Atomic Energy Commission, 2. Department of Civil and Environmental Engineering, Saitama University

Low and Intermediate level wastes (LILW) in Bangladesh are being generated from operation, repair and maintenance of 3MW TRIGA MARK-II research reactor (RR), 14 MeV Neutron Generator and research & commercial irradiators such as Co-60 and isotope production for medical purposes. The wastes arising from these sources are generally spent ion exchange resins, graphite, lead and polythene plugs, contaminated vials, hand gloves, plastic syringes, tissue papers, shoe-covers, protective cloths, plastic and metallic wares, spent and disused sources (SRS), activated carbon, gaseous discharges, etc. The radionuclides involved with these wastes are- Co-60, Cs- 134 & 137, Sr-90, Ir-192, Tc-99m, I-131, I-125, C-14, H-3, Ra-226, Am-Be neutron sources, Cm-244, Am-241, Cr-51, Mn-54, Zn-65, P-32, Sc-46, etc. Solid radioactive wastes are collected, segregated at the place of generation and stored in interim-storage rooms of the Central Radioactive Waste Processing and Storage Facility (CWPSF), developed by Bangladesh Atomic Energy Commission (BAEC) in cooperation with International Atomic Energy Agency (IAEA). Short lived radionuclides containing solid wastes are managed by delay-and-decay storage and released into the environment. Others are safely transported & stored in shielded enclosures within CWPSF. Besides, Bangladesh is implementing Nuclear Power Plant (NPP) projects by constructing two reactors of 1000 MW each. It is expected to have more LILW from this NPP which needs to be disposed safely. For safe disposal of LILW, a National Radioactive Waste Management Plan (NRWMP) has been formulated by BAEC where site investigations and processes for site selection for waste disposal facilities is one of the key issues.

For selecting a potential site for safe disposal of radioactive waste, Bangladesh have several apparently suitable geological formations, such as basement hard rock at more than 100 m depth and clay formations exposed at many locations to few meters only. The basement hard rocks of Bangladesh are tonalitic and granodioritic rocks, variously deformed to granitic gneiss and intruded by younger monzogranite having mineralogical composition of plagioclase, quartz and hornblende, with lesser amounts of biotite and potash feldsparand trace amounts of clinopyroxene, titanite and iron oxides. (Ameen et al., 2007). On the other hand, the tropical clays of the central part of the country, called Madhupur Clay Formations are typically highly weathered and reddish brown color. They are mainly composed of kaolinite, illite, chlorite and illite-smectite mixed layer minerals along with some non-clay minerals like quartz, crystobalite, orthoclase, microcline, plagioclase, calcite, siderite and dolomite and of intermediate to high plasticity inorganic clay (Haque et al., 2013; Hossain and Toll, 2006). Physical and engineering properties of these two types of geological materials have been studied by various researchers to some extent. However, their detail geochemical characteristics, specially the migration behavior for radionuclides and associated studies have yet to be investigated. The present study will review these two materials' properties for potentiality of hosting LILW repository with suggestions for future investigations.

Keywords: Basement hard rock, Madhupur Clay, Radioactive waste repository, Bangladesh

再冠水試験に伴う埋め戻し試験 (2)坑道埋め戻し材の水理学的挙動の重 要因子の推定

Backfilling test in the groundwater recovery experiment (2) Effective factors on saturation of backfilling material

*尾崎 裕介¹、尾上 博則¹、高山 裕介¹、高安 健太郎¹、竹内 竜史¹ *Yusuke Ozaki¹, Hironori Onoe¹, Yusuke Takayama¹, Kentaro Takayasu¹, Ryuji Takeuchi¹

1. 国立研究開発法人日本原子力研究開発機構

1. Japan Atomic Energy Agency

日本原子力研究開発機構は,高レベル放射性廃棄物の地層処分技術に関する研究開発の一環として,岐阜県 瑞浪市に位置する瑞浪超深地層研究所において,結晶質岩(花崗岩)を主な対象として深地層の科学的研究 (地層科学研究)を進めている。現在,瑞浪超深地研究所の深度500mに掘削した水平坑道を利用した研究開 発として,①地下坑道における工学的対策技術の開発,②物質移動モデル化技術の開発,③坑道埋め戻し技術 の開発の3つの課題を設定し進めている。

これらの研究開発課題のうち③坑道埋め戻し技術の開発の一環として、瑞浪超深地層研究所の深度500mの 坑道内に止水壁を設置することで坑道の一部(以下、冠水坑道)を地下水で満たし、再冠水に伴う地質環境特 性の回復過程を把握する再冠水試験を実施している。この試験の一部として、坑道内のボーリングピットを利 用して、坑道冠水時の埋め戻し材(ベントナイト、砂、礫)の透水性や膨潤圧などの物性評価手法の構築を目 的とした埋め戻し試験を実施している。

埋め戻し材には砂や礫とベントナイトの混合物を用いている。ピットの埋め戻し材内部には水圧計,土圧計 及び土壌水分計を配置し,坑道の冠水に伴う埋め戻し材内部の水圧や飽和度の変化データを取得している。取 得したデータからは,埋め戻し後約1ケ月程度で,埋め戻し材内部が飽和していることが示唆されている。他 方,高山ほか(2015)による埋め戻し材の物性をベントナイト100%と仮定した予察解析では,冠水後約1年で ピット全域の飽和度が90%以上に達する結果であった。このことから埋め戻し材のベントナイトの含有量が飽 和挙動に影響することが示唆されたものの,ベントナイトを含む埋め戻し材の飽和挙動に影響を与える要因は 特定されていない。

上記の結果を踏まえ、本研究では、定常状態における埋め戻し材内部の飽和度変化に影響を与える要因を特定することを目的として、固相/液相/気相連成有限要素解析コードDACSAR-MP(金澤ほか、2012)を用いた解析を実施した。解析では、埋め戻し材の膨潤変形による間隙率変化が飽和度変化に与える影響、埋め戻し材内部の透水性および侵入する地下水の流量と飽和度変化の関係、埋め戻し材の吸水能力と飽和度変化の関係に着目し、①埋め戻し材の膨潤変形、②埋め戻し材の透水性、③埋め戻し材の不飽和特性を感度パラメータとした感度解析を実施した。

埋め戻し材の膨潤変形に着目した感度解析の結果,膨潤変形の有無で定常状態に至るまでの飽和度の時間変 化に若干の違いが認められたものの,定常状態に至るまで約250日を要した。また,定常状態における飽和度 分布は膨潤変形を考慮した場合とほぼ同様になることを確認した。埋め戻し材の透水性に関する感度解析で は、ベントナイト100%の場合の透水性よりも100倍高い場合を想定した解析結果においても定常状態に至る まで約200日を要し,ピット内中心付近では完全には飽和しないことが確認された。これに対し,不飽和特性 に関する感度解析では,粒径の大きさと関連のあるモーレム定数を大きくした場合に約10日で埋め戻し材の全 域がほぼ飽和した。

これらの結果は、埋め戻し材の不飽和特性が埋め戻し材内部の飽和度変化に影響を与える重要なパラメータ であり、特に埋め戻し材の平均的な粒径が関連している可能性を示唆している。さらに、埋め戻し材の飽和度 変化を精度よく推定するためには、不飽和特性に関するデータを取得することの必要性が示された。 キーワード:埋め戻し材、飽和挙動、シミュレーション Keywords: Backfill material, Saturation process, Numerical simulation

地下水の地球化学分析と物質移行解析による断層の水理特性の把握 Estimation of hydrogeological properties of a fault by geochemical analysis of groundwater and mass transport analysis

*岡嶋 純也¹、柏谷 公希¹、多田 洋平¹、小池 克明¹ *Junya Okajima¹, Koki Kashiwaya¹, Yohei Tada¹, Katsuaki Koike¹

1. 京都大学

1. Kyoto University

高レベル放射性廃棄物の処分方法として、日本をはじめ世界各国で検討されている地層処分では、処分した 廃棄物に含まれる放射性核種が地下水の作用で溶け出した場合でも、生物圏に影響を及ぼさないことが求めら れる.そのため、処分場周辺の地下水の流動状態を把握する必要があるが、その内部構造に応じて地下水流動 のパスとしても、バリアとしても働く断層の水理特性の理解は十分でない、そこで本研究では、地下水のサン プリングおよび分析と既存資料から断層周辺における地下水の環境トレーサー濃度の空間分布や時間変化を把 握し、三次元水理地質モデルを用いた地下水流動解析および物質移行解析の結果と比較することで、断層周辺 の地下水流動状態および物質移行状態を推定した.

本研究の対象地域は日本原子力研究開発機構(JAEA) 瑞浪超深地層研究所の周辺地域である.研究所の地下 坑道内には,北西一南東走向で深度500mに達する主立坑に沿ってほぼ鉛直傾斜の主立坑断層が分布してお り、その両側に位置するボーリング孔5箇所,計12区間で地下水試料を採取した.主要溶存イオン、アルカリ 度、水素・酸素同位体,六フッ化硫黄、トリチウムの5項目を分析し,JAEAにより公開されている過去の地下 水の地球化学モニタリングデータ(齋ほか,2011;新宮ほか,2011;新宮ほか,2012;大森ほ か、2013a;大森ほか,2013b;大森ほか,2014)と合わせて各種特性の空間分布や時間変化を把握し た.また,研究所周辺を含む三次元水理地質モデルを作成し,まず広域での地下水流動解析を行った.得られ た結果を境界条件として,断層周辺をマルチグリッド化したモデルを用いて地下水流動解析および物質移行解 析を行い,分析で得られた実測値と比較した.

分析の結果,カルシウムイオン,塩化物イオン,臭化物イオンの各濃度,水素・酸素同位体比,さらにトリ チウム濃度について断層両側で空間分布の特徴が異なることが明らかとなった。上述のイオン濃度には高い相 関が認められ,断層南西側でのみ時間とともに濃度が低下する傾向が見られた.断層周辺での立坑掘削の影響 を考慮した塩化物イオンの物質移行解析の結果では,分析結果と同様に断層南西側でのみ濃度変化が見られ た.地下水流動解析の結果でも断層両側で水頭差が確認されたため,主立坑断層は遮水性の構造であることが 確かめられた.また,トリチウムを対象とした物質移行解析の結果からは,断層両側のダメージゾーンに 沿った,トリチウムを含む若い地下水の流入が確認でき,その流速は断層南西側の方が大きいことが示唆され た.これは分析の結果と一致しており,主立坑断層における地下水流れのパスとしての機能が明らかに なった.

今後は今回使用した以外の成分についても分析を実施するとともに,水一岩石反応を考慮し,断層周辺での 水質の空間分布や時間変化を推定する予定である.

本研究は経済産業省の委託事業「平成26年度放射性廃棄物重要基礎技術研究調査」の成果の一部である。こ こに記して関係各位に感謝の意を表する。

引用文献

齋正貴・新宮信也・萩原大樹・水野崇(2011)超深地層研究所計画における地下水の地球化学に関する調 査研究一瑞浪層群・土岐花崗岩の地下水の地球化学特性データ集一(2008年度), JAEA-Data/Code 2011-003.

新宮信也・齋正貴・萩原大樹・水野崇(2011)超深地層研究所計画における地下水の地球化学に関する調査研究一瑞浪層群・土岐花崗岩の地下水の地球化学特性データ集一(2009年度),JAEA-Data/Code

2011-004.

新宮信也・萩原大樹・増田薫・飯塚正俊・乾道春・水野崇(2012)超深地層研究所計画における地下水の 地球化学に関する調査研究一瑞浪層群・土岐花崗岩の地下水の地球化学特性データ集ー(2010年 度), JAEA-Data/Code 2012-003.

大森一秋・新宮信也・萩原大樹・増田薫・飯塚正俊・乾道春・岩月輝希(2013)超深地層研究所計画にお ける地下水の地球化学に関する調査研究一瑞浪層群・土岐花崗岩の地下水の地球化学特性データ集一 (2011年度), JAEA-Data/Code 2013-001.

大森一秋・新宮信也・増田薫・青才大介・乾道春・岩月輝希(2013)超深地層研究所計画における地下水の地球化学に関する調査研究一瑞浪層群・土岐花崗岩の地下水の地球化学特性データ集一(2012年度), JAEA-Data/Code 2013-024.

大森一秋・長谷川隆・宗本隆志・増田薫・青才大介・乾道春・岩月輝希(2014)超深地層研究所計画にお ける地下水の地球化学に関する調査研究一瑞浪層群・土岐花崗岩の地下水の地球化学特性データ集一 (2013年度), JAEA-Data/Code 2014-019.

キーワード:地下水、環境トレーサー、物質移行解析 Keywords: groundwater, environmental tracer, mass transport analysis

RQDに基づく割れ目頻度の推定方法の検討 Estimation of fracture frequency on the basis of Rock Quality Designation

*笹尾 英嗣¹

*Eiji Sasao¹

1. 国立研究開発法人日本原子力研究開発機構 東濃地科学センター

1. Tono Geoscience Center, Japan Atomic Energy Agency

<はじめに>

高レベル放射性廃棄物の地層処分において、日本学術会議(2014)は、「放射性核種が地下水によって人 間環境に運ばれるかも知れないことは大きな不安要因で」あることから、「割れ目の少ない岩盤を処分場候補 地とすることが望まし」く、それには「地質履歴から割れ目の少ない岩盤を探す論理立てを確立することが必 須である」としている。このためには、まずは国内の岩盤(岩体)での割れ目の分布状態を知る必要がある が、割れ目の分布を調査した事例は限られている。そこで、本検討では、割れ目を評価するための代替情報と して、一般的なボーリング調査で広く取得されているRQD(Rock Quality Designation)に着目した。ただ し、RQDは割れ目の数が同じでも、割れ目間隔によって数値が変わりうるため、岩体スケールの割れ目頻度の 多寡を1mごとに求められるRQDに基づいて直接的に評価することは困難である可能性が考えられる。このた め、本検討では、これまでに数多くの深層ボーリングが行われている土岐花崗岩を対象として、ボーリング孔 ごとにRQDの平均値を計算し、割れ目頻度と比較した。

<方法>

RQDは一般には回収されたコア観察に基づいて計算される。しかし、この方法では、コアロスの発生や掘削・回収時の割れ目の形成によって、RQDが適切に見積もられない可能性がある。一方で、掘削後にボアホールテレビ(BTV)を用いた孔壁観察によって適切に割れ目の状態を捉えることができ、孔壁観察の結果からRQDを計算した方が岩盤特性をより適切に評価できるとされている(鈴木・梶原、1997)。

そこで、本検討では、瑞浪超深地層研究所周辺の地表から掘削したボーリング19孔(鉛直孔17孔、傾斜孔 2孔)と、研究所の研究坑道から掘削したボーリング5孔(鉛直孔1孔,水平孔4孔)において、BTVを用いた 孔壁観察で確認された割れ目データ(石橋・笹尾,2015,2016)に基づいてRQDを計算した。対象とした ボーリングの花崗岩中の総掘削長は16,180mであり、確認された割れ目は合計43,658本である(なお、割れ 目のうち、孔壁画像上で破断面の形状、連続性ともに極めて明瞭な割れ目(明瞭割れ目)は24,737本で あった)。

本検討では、各割れ目の交差深度(傾斜している場合には、中間の深度を使用)を抽出し、2つの割れ目の 交差深度が10cm以上の区間長を掘削長1mごとに求めることによりRQDを計算し、それをボーリング孔ごとに 平均した。

<結果と考察>

地表からのボーリングと研究坑道内からのボーリングのBTV調査で得られた割れ目データに基づく と、ボーリング孔ごとのRQDの平均(以下、BH平均RQDと呼ぶ)は79.9~98.6、割れ目頻度(1m当たりの 割れ目の数)の平均(以下、BH平均割れ目頻度と呼ぶ)は0.7~6.6本/mであった(明瞭割れ目のみで は、BH平均RQDは89.5~99.1、BH平均割れ目頻度は0.5~3.8本/m)。BH平均RQDとBH平均割れ目頻度の 間には明瞭な相関があり、BH平均RQDの平均値が大きいほどBH平均割れ目頻度が低く、BH平均RQDが小さ いほどBH平均割れ目頻度が高いことが明らかになった。

本検討で使用したボーリングの花崗岩中の掘削長は、地表からのもので329~1,185m、坑内からの鉛直孔 で331m、水平孔で30~106mであり、BH平均RQDとBH平均割れ目頻度の関係はボーリング孔の傾斜角や掘 削長には影響を受けないと推定される。そこで、検討に使用したボーリング孔ごとのデータを、掘削の傾斜角 に関係なく、掘削長100mごとに分割し、RQDの平均と割れ目頻度の平均を比較した。その結果、掘削長 100mごとのRQDの平均は68.0~100.0(平均92.9)、1m当たりの割れ目頻度の平均は0~9.2本/m(平均 2.8本/m)であった。このRQDと割れ目頻度を比較した結果、BH平均RQDとBH平均割れ目頻度との関係に 比べてばらつきが若干大きくなるものの、両者には相関が認められた。

この結果から、1mごとに得られるRQDを適当な長さで平均することによって、割れ目の多寡の評価に活用 できると考えられる。今後は、どの程度以上の区間長であれば割れ目頻度を適切に評価できるかを検討すると ともに、他岩体のデータも加味した検討が必要である。

文献

石橋・笹尾(2015, 2016)日本原子力研究開発機構研究開発報告書類, JAEA-Data/Code 2015-004, 8p. および2016-009, 10p.

日本学術会議 高レベル放射性廃棄物の処分に関するフォローアップ検討委員会 暫定保管に関する技術的検 討分科会(2014)報告 高レベル放射性廃棄物の暫定保管に関する技術的検討,65p.

鈴木・梶原(1997)応用地質技術年報, No.19.61-70.

キーワード:割れ目頻度、RQD、土岐花崗岩

Keywords: fracture frequency, Rock Quality Designation, Toki granite

放射性廃棄物処分における沿岸部の下刻侵食のリスクマネジメント Risk management of downward erosion in the coastal area for disposal of radioactive waste

*幡谷 竜太¹ *Ryuta Hataya¹

1. 一般財団法人 電力中央研究所

1. Central Research Institute of Electric Power Industry

1. はじめに

HLW処分場の科学的有望地選定に係わる中間整理[1]において,沿岸部がより適性の高い地域とされた.これ を受けて設置された沿岸海底下等における地層処分の技術的課題に関する研究会では,隆起・侵食に係る調 査・評価技術の高度化の必要性が取り上げられた.一方,中深度処分の規制の審議でも,少なくとも10万年 間は著しい侵食作用の影響を回避し,侵食作用を考慮しても離隔に必要な深度を確保することが議論されてい る[2].これらを踏まえ,本発表では,沿岸部の河川下刻のリスクアセスメントの知見[3など]に基づき,沿岸部 の隆起・侵食に関わるリスクマネジメントの枠組み,リスクに関わる意思決定の在り方について議論し,マネ ジメントの観点から解決すべき課題を抽出する.

なお、本研究では議論を単純化するため、議論の範囲を隆起地域に限定、断層等の影響はない、との前提を 置いて、海水準変動1サイクル後の約10万年間を議論する.

2. 下刻侵食のリスクマネジメントの概要

ー般的なリスクマネジメントの流れに沿って,リスク対応方針の決定,リスクアセスメント,リスクト リートメントを考える.

(1) リスクマネジメント方針

最終処分法では,著しい侵食の影響を避けるとされているが,この具体化として,少なくとも10万年間は地 表露出させない,少なくとも10万年間は一定深度を確保するといった考え方がある[2,4など].いずれにせ よ,下刻が着目される.

(2) リスクアセスメント

沿岸部における河川下刻のリスク分析については、1つには、中間整理[1]などで述べられた、「過去10万年 程度の間の海水準の最大低下量と隆起量の和」を最大下刻量とする考え方がある.一方、「我が国の隆起域に おける後期更新世以降現在までの氷期/間氷期1サイクルの間に生じた下刻量は、当該地点のその期間の隆起 量に約100mを加えたものが最大であるとする見解もある[3].さらに、「過去に実際に起こった下刻量を以 て、これを将来の下刻量と評価する」という考え方もあろう.

以上のようなアセスメントの結果を以て,リスク基準との比較を行う(リスク評価).リスク基準について は,次章で詳述する.

(3) リスクトリートメント

一般に、リスクへの対応は、回避、低減、分散、保有の4つに区分される.前3者は、それぞれ、サイトから 除外する、埋設深度を深くする、複数地点を選定・開発すると言える.

3. 放射性廃棄物処分サイトの選定に際しての河川下刻のリスク基準の考察

意思決定をスムーズに行うための知恵として,我々は予めリスク基準を決め,それと調査・評価の結果を比較することをやってきた.前章では,3つの河川下刻のリスクアセスメントの考え方を紹介したが,これらのことから,将来約10万年後の下刻に対して,以下の3つのリスク基準を考えることができる.

[A]最大海面低下: 隆起量+最大海水準低下量

[B]後期更新世以降の海面低下に対する下刻の最大値:隆起量+100m(隆起域) [C]後期更新世以降の海面低下に対する下刻の実績値:隆起量+沖積層基底深度

Aは海水準変動の不確実性の影響を容認する.即ち,想定よりも海水準最大低下量が大きければ下刻は深くなるし,小さければ浅くなる.Bは海水準変動に加えて,沖積層基底の深度分布の不確実性の影響を保有する.つまり,反証があるかないかである・Cは海水準変動に加えて,地形・地質調査の不確実性の影響を保有する.なお,どこが下刻されるかわからない,河川の流路が特定できない前提では,AとBは採用できるが,Cはできない.

大局的には, A, B, Cの順に地表接近に関わる裕度が大きくなり, 処分場建設可能範囲が広がると考えられ, また, 経済的にも有利と考えられる.

4. まとめ

本稿はどのリスク基準の妥当かを述べるものでは無い.ここで訴えたい点は,将来予測を受入れること,リ スク対応方針,リスク基準,リスク対応を決めることは,背後にあるリスクを保有するという当たり前のこと である.そして,長期の将来を見通すことが求められる放射性廃棄物処分事業では,リスクマネジメントの枠 組みを示し,殆どが個々に実施されているリスク分析の研究をこの中で具体的に表現すること,保有するリス クを説明することが,意思決定の際の効果的な情報提供となると考える.

引用文献

[1]地層処分技術WG(2015)科学的有望地の要件・基準に関する地層処分技術WGにおける中間整 理,[2]原子力規制委員会(2016)炉内等廃棄物の埋設に係る規制の考え方について(案),[3]幡谷ほか (2016)応用地質,57,15-26.,[4]NUMO(2009)概要調査地区選定上の考慮事項.

キーワード:地層処分、沿岸部、侵食、リスクマネジメント Keywords: geological disposal, coastal area, erosion, risk management

Assessing the probability of concealed active faults existing through Bayesian analysis of known active faults, historical seismicity and helium isotopes

*Andrew Martin¹, Koichi Asamori², Tsuneari Ishimaru²

1. National Cooperative for the Disposal of Radioactive Waste, 2. Japan Atomic Energy Agency

Assessing the stability of the geological environment including the spatio-temporal distribution of active faulting is of particular concern in the context of site selection of critical facilities such as nuclear power plants, spent fuel reprocessing facities as well as geological repositories or surface storage facilities of radioactive waste etc. Understanding the spatial distribution of active faulting is one of the challenges facing geologists in that not all active faults have surface experessions. This is especially so for active faults that initiated within the last 0.5 Ma due to their smaller cummulative displacements compared with older and more mature active faults (e.g. faults that have been active for 1 - 2 Ma or longer) (Doke et al., 2012).

The western Tottori regions is an area where two recent earthquakes occurred along two separate unknown faults; the 2000 Tottori earthquake (6 October 2000; Mw 6.6) and the 2016 Tottori Earthquake (21st October 2016; Mw 6.2).

We present here a probabilistic approach based on Bayesian statistics that can be used to combine multiple datasets (in this case historic seismic data and helium isotopes sampled from wells) to produce hazard maps showing the likelihood of active faults existing or not.

In order to assess the spatio-temporal distribution of active faults, we start by looking at mapped active faults to estimate spatial frequencies and orientations. This data is sporadic as active faults listed in current databases do not necessarily represent all active faulting, as not all active faults have a surface evidence and their existence might be unknown. In this case, additional datasets are needed that may imply the existance of active faulting. Datasets such as high He-3/He-4 ratios which tend to be found in volcanic regions have been attributed to degassing from the mantle. Studies carried out in the western Tottori district have shown the potential of using He-3/He-4 ratios as a means of providing indirect evidence of the existence of source fault(s) that caused the 2000 and 2016 Tottori earthquakes (e.g., Umeda and Ninomiya, 2009).

We applied our Bayesian model in the Tottori district as a case study. In the first step, present known active faults are divided into equal fault segments. 2-D prior probability distributions are calculated using probability density functions (PDFs) centered over the fault segments with varying values of standard deviation depending on the degree of conservation required. A non-conservative PDF is assigned in the first step so that probability is never zero. In the second step, statistical tests are used to remap additional datasets, here He-3/He-4 and estimated historic seismic souce zones into a likelihood PDF. The prior PDF from the first step above is then combined with the likelihood PDF using Bayes' rule to produce a posterior PDF. The posterior PDF is then evaluated using recent seismic activity.

References

Doke, R., Tanikawa, S., Yasue, K., Nakayasu, A., Niizato, T., Umeda, K. and Tanaka, T. (2012), Spatial patterns of initiation ages of active faulting in the Japanese Islands (in Japanese with English abstract). *Active Fault Research*, *37*, 1–15.

Umeda, K. and Ninomiya, A. (2009) *Geochem. Geophys. Geosys., 10, Q08010,* doi:10.1029/2009GC002501.

Keywords: Active Fault , Bayesian, Probability