津波早期検知のための微気圧観測網で捉えられた自然現象起源のインフラ サウンド

Infrasound from natural phenomena observed by infrasound observation network for study on early detection of tsunami

*乙津 孝之¹、新井 伸夫²、村山 貴彦¹、本橋 昌志¹、坂本 豊実¹、岩國 真紀子¹、野上 麻美¹
*Takayuki Otsu¹, Nobuo Arai², Takahiko Murayama¹, Masashi Motohashi¹, Toyomi Sakamoto¹, Makiko Iwakuni¹, Mami Nogami¹

- 1. 日本気象協会、2. 名古屋大学減災連携研究センター
- 1. Japan Weather Association, 2. Disaster Mitigation Research Center, Nagoya University

2011年の東北地方太平洋沖地震では、津波波源域の海面変動を起源とする大気境界波の伝播に伴う気圧変動が震源域周辺の微気圧計によって観測された(Arai et al., 2011)。これを受けて、巨大津波の早期検知の研究と将来的な津波観測網の構築に向けた実証観測を目的として、2013年7月に岩手県大船渡市、2015年6月には三重県志摩地域で微気圧計による観測を開始した。なお、これらの観測データは、今後のインフラサウンド研究の一助とすべく、ウェブ上で公開することを計画している。

また、海面変動以外にも様々な自然現象がインフラサウンドを励起することが知られており、上記の観測点でも自然現象が起源と思われるシグナルがしばしば観測されている。本発表では、これまで観測されたシグナルのうち、火山噴火や火球などの起源が明らかないくつかの事例について紹介する。このような様々な現象に起因するシグナルの解析を通じて、発生源となった現象の識別やシグナルの伝播特性に関する知見の蓄積が期待される。

キーワード:インフラサウンド、津波、火山噴火、火球、微気圧計 Keywords: Infrasound, Tsunami, Volcanic eruption, Bolide, Microbarograph 地震が励起するラム波、内部重力波、音波についての考察 Consideration on the Exciation of Lamb Waves, Internal Gravity Waves, and, Acoustic Gravity Waves

- *中島健介1、城内響2
- *Kensuke Nakajima¹, Hibiki Jonai²
- 1. 九州大学大学院理学研究院地球惑星科学部門、2. 九州大学大学院理学府地球惑星科学専攻
- 1. Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, 2. Department of Earth and Planetary Sciences, Graduate School of Sciences, Kyushu University

はじめに

地震断層運動あるいは、それに伴う海面の鉛直変位によって、大気中に波動が励起されることは理論的にも 観測的にも知られている。しかし、こうした大気下面変位による大気波動励起の力学については必ずしも良く 理解できていないように思われる。本研究では、圧縮性成層大気の波動について、水平方向に周期性を仮定し た鉛直1次元線形モデルを構成し、下面境界の変位による波動の励起特性をしらべた。

モデルと計算設定

2次元非回転系の圧縮性大気の支配方程式 (例えば, 小倉1983)を線形化し, さらに, 擾乱の水平構造を波型と仮定すると, 擾乱の鉛直伝播についての時間発展方程式が得られる. これを差分化して初期値境界値問題として数値的に解く. 基本場(静水圧平衡していると仮定)の温度構造としては標準的な大気構造を与え, 一般風は考えない. 初期条件としは擾乱が存在しないとする. 下面境界として地震断層などを想定した時間変化する鉛直変位を与えるが, 地震断層運動を想定して, 鉛直流が正のパルス状, したがって, 時間平均した正味の変位として正の偏差を伴うものとする.

結果

大気中に励起される波動の種類は、断層運動の時間スケールに依存して異なる. 断層運動が音波遮断周波数に比べてゆっくり生じる場合には、もっぱら下層大気のラム波だけが励起される. 逆に、断層運動が音波遮断周波数よりも速く生じる場合には、最初に音波が生じて高層大気にまで伝播し、その後、高高度領域で内部重力波が生じる. ラム波の励起振幅は小さい.

考察

興味深い結果は, 高高度の内部重力波の励起に音波の励起が必要なことである. 数値解の様相(当日示す)をみると, 断層運動が速やかである場合には, 上向き伝播する音波の通過に伴って, 大気の正味上向きの変位が生じ, これが内部重力波の励起につながっている. その他の詳細は当日示す.

キーワード:ラム波、内部重力波、重力音波、インフラサウンド、地震

Keywords: Lamb waves, internal gravity waves, acoustic gravity waves, infrasound, earthquake

Ionospheric volcanology: GNSS-TEC observation & modeling of the 2015 Kuchinoerabujima eruption

*中島 悠貴¹、西田 究²、青木 陽介²、Occhipinti Giovanni³、日置 幸介¹
*Yuki Nakashima¹, Kiwamu Nishida², Yosuke Aoki², Giovanni Occhipinci³, Kosuke Heki¹

- 1. 北海道大学大学院理学院自然史科学専攻地球惑星ダイナミクス講座、2. 東京大学地震研究所、3. パリ地球物理研究所
- 1. Natural History Sciences, Graduate School of Science, Hokkaido University, Earth and Planetary Dynamics, 2. Earthquake Research Institute, University of Tokyo, 3. Institut de Physique du Globe de Paris

Efforts in last decade prove that ionosphere, mainly observed by GNSS measuring the total electron content (TEC), is sensitive to geophysical phenomena as earthquakes, tsunamis, and, more recently, volcanic explosions.

Kuchinoerabujima is a volcanic island located in ~200 km southwest of Kyushu, Japan. The volcano erupted at 0:59 UT May 2015 (VEI 3).

We found a concentric acoustic wave following the eruption in GNSS-TEC time series. We used 1 Hz GEONET (GSI) data for this analysis. The observed wave seems include high frequency (5–10 mHz) pulse disappearing in the first ~300 km around the volcano and a monochromatic wave (~5 mHz) observable for more than ~20 min and reaching the distance of ~400 km. The traveltime indicates the wavefront is almost spherical. We interpreted those signals as a combination of, first, the direct shock wave propagating within the atmosphere/ionosphere and, second, the acoustic wave trapped in the lower atmosphere/ionosphere by the effect of the cut-off frequency change with the altitude.

Our observation are also supported by various ground observations: barometers (NIED; AIST), microphones (NIED; JMA) and broadband seismometer (NIED). We detected ~1 hPa wide frequency range (2–70 mHz) air wave in near-field and ~15 mHz perturbation reflecting or refracting once or twice at ~100 km from the volcano. The difference of frequency components derives from the instruments noise level or dispersion of the wave.

In order to validate our hypothesis we support and discuss our observations with the light of the modeling with the main goal of constrain some physical parameters of interest in volcanology.

Acknowledgement: We thank AIST for barometric records by the integrated groundwater observation well network for earthquake prediction of the Tonankai/Nankai earthquake. We also thanks IPGP, ERI and Hokkaido Univ. exchange programs to make our collaboration possible.

キーワード:電離圏、GPS、GNSS、火山 Keywords: Ionosphere, GPS, GNSS, Volcano 3D地震計アレイによる2013年12月17日の琵琶湖付近の火球で生じた衝撃波の観測

Observation of shockwave from the 17 December 2013 Biwako bolide using 3D seismic array

- *武田 直人1、今西 和俊1、松本 則夫1
- *Naoto Takeda¹, Kazutoshi Imanishi¹, Norio Matsumoto¹
- 1. 国立研究開発法人 產業技術総合研究所
- 1. National Institute of Advanced Industrial Science and Technology

地震記録を使って、火球の検知やその飛跡を求めた例は数多く報告されている。火球の様子を明らかにする手段として、ほかにもビデオカメラ映像や音波観測があるが、地震計をセンサーとした場合、その観測点数の多さや、天候に大きく左右されないのがメリットである(例えばIshihara et al. EPS 2003). 高知新聞で報道された2016年2月29日未明の高知県南国市近辺での衝撃波も、周囲の地震記録から火球の可能性が考えられる。その反面、地震記録では衝撃波の特徴である(逆)N型波形が不明瞭であったり、火球の軌跡や速度が推定できない場合があることも報告されている(Yamada and Mori EPS 2012). 本報告では、稠密3D地震計アレイの波形記録を基に、2013年12月17日夜、琵琶湖付近で観測された火球の飛行速度を推定した。

我々は、深部低周波微動の研究のために三重県松阪市に於いて2011年から地震計アレイによる観測を実施している(例えば武田ほか JpGU 2015). この地震計アレイは産総研の地下水等総合観測施設を中心に、合計46個の地震計が最大距離10kmの範囲の地表に設置されている. また、総合観測施設では鉛直3深度(25m、164m、595m)に埋設されているボアホール型地震計(Imanishi et al. GRL 2011)がある.

それらの地震計のうち地表設置のものにはオンセットが明瞭な2013年の火球による衝撃波のN型波形が記録されていた。一方、ボアホール型地震計の記録ではオンセットが不明瞭であり、一番深い設置深度595mの記録では波形自体の確認が困難であった。

波形が明瞭な地表観測点波形記録だけを使用して、衝撃波の到達時刻を読み取り、音源が点の場合と、一定速度で移動する場合の音源位置をグリッドサーチで求めた。その結果、一定速度で移動している場合の方が各観測点の到達時刻をより良く説明出来た。この時の音源の速さは27km/s、突入仰角43°になった。この値は、ビデオカメラ映像の解析から求めた値25km/s、47°(SonotaCo Network Japan)と良く一致している。

キーワード: 火球、地震計アレイ Keywords: bolide, seismic array

インフラサウンドの多地点観測によるリモートセンシング Remote Sensing by Multi-site Observation of Infrasound

- *齋藤 耕¹、水本 聡¹、反町 玲聖¹、山本 真行¹
- *Ko Saito¹, Satoshi Mizumoto¹, Ryosei Sorimachi¹, Masa-yuki Yamamoto¹
- 1. 高知工科大学
- 1. Kochi University of Technology

はじめに

我々は、地震、津波、雷などの地球物理現象が波源となり発生するインフラサウンドの観測を行ってきた。地球物理現象には、年スケールで比較的高頻度で発生する現象からごく稀にしか発生しないものがある。それらの検出可能な強度の波の観測を含めた定常的なモニタリング観測に向けて現在、インフラサウンドセンサおよびカメラ、電波受信アンテナを多地点に設置した多地点アレイ観測システムによる総合的な観測を開始した。今回、これらにより同時観測された落雷および火球(流星)の観測結果および考察を報告する。

多地点観測

インフラサウンドセンサ (Chaparral Physics Model 25)、光学カメラ、電波受信アンテナを高知工科大学 (香美市)、芸西天文学習館(芸西村)、みどりの時計台(大豊町)の三地点で2016年12月より多地点総合 観測を行っている。みどりの時計台ではインフラサウンドと電波観測のシステムがあり、他二地点では全観測システムが定常的に稼働している。芸西、大豊の各機器の稼働状況はモバイル回線を通して本学で確認でき、ファイルの送受信も可能となっている。

今回、2016年12月13日に発生した落雷および2017年1月5日に観測した流星の観測結果について述べる。2016年12月13日18時59分に発生した落雷の音波は各観測点で観測されており、それらの時刻差から落雷位置と時刻を算出した。また、本学設置のカメラおよび各観測点の電波受信アンテナが、発光および電波を観測している。落雷地点より24 km離れた緑の時計台で振幅0.06 PaのN型大気圧力波形を検出した。

2017年1月5日22時33分に到来した流星により発生した音波は、二地点で観測された。芸西で振幅0.05 Paの衝撃波に類似した圧力波形を観測した。また、流星の大気圏突入の際に形成される電離柱により反射した電波(福井高専から定常出力)が二地点のアンテナで観測され、本学のカメラが流星を観測した。

結果および考察

落雷音波の各地点の観測時刻差により求めた落雷時刻と、アンテナが電波を観測した時刻に1秒のずれが生じた。これは、音速が一定かつ風向きが一様の仮定や、放電路の方向などの条件によるものと考えられる。また、これらは算出した落雷位置の精度誤差の要因となり、今回の解析では±300 mの誤差が考えられる。距離による音波振幅減衰は各地点のパワースペクトルにより算出した。落雷地点からの距離の差が最大で18 kmとなる本学および大豊では20 dBの差があった。

流星の大気圏突入により発生したインフラサウンドは芸西で周期1.53秒の衝撃波型の波形で観測された。イベントの前後10秒のパワースペクトルを比較し、後の方が10 Hz以下の低周波側が10 dB程度大きくなっていることを確認した。これは、衝撃波が通過した際、低周波の擾乱を主成分とする圧力波が検出されたと考えられる。本学設置のカメラでは3回ほどの爆発状の発光を確認しており、通常の流星よりも比較的規模が大きい火球と考えられる。物体が大気圏外からの突入で発生するインフラサウンドが観測されるのは非常に稀であり、定常的なリモートセンシングでなければ観測は非常に困難である。

まとめ

音波観測によるイベントの時刻および位置を算出する際、誤差要因として音速が大きく関係しているため、今後各観測点に温度センサーを設置し、気温の情報を取っていく必要がある。また、可聴域をセンシングすることで周波数減衰も確認することができる。定常的なリモートセンシングにより、非常に頻度の少ない地

球物理現象の観測に成功した。今後も総合観測により様々な観測データとして蓄積していく。

キーワード:インフラサウンド、雷、雷鳴、流星 Keywords: Infrasound, Lightning, Thunder, Meteor

微気圧計の振動実験

Shaking table tests on seismic response of microbarograph

- *岩國 真紀子 1 、村山 貴彦 1 、大井 拓磨 2 、新井 伸夫 3 、綿田 辰吾 4 、市原 美恵 4
- *Makiko lwakuni¹, Takahiko Murayama¹, takuma oi², Nobuo Arai³, Shingo Watada⁴, Mie Ichihara⁴
- 1. 一般財団法人 日本気象協会、2. 東邦マーカンタイル株式会社、3. 名古屋大学減災連携研究センター、4. 東京大学地震 研究所
- 1. JAPAN WEATHER ASSOCIATION, 2. Toho Mercantile co., ltd., 3. Disaster Mitigation Research Center, Nagoya University, 4. Earthquake Research Institute, the University of Tokyo

微気圧計は大きい地震でも振り切れることなく設置した場所周辺の地面の振動を計測でき、地震計を補完できる可能性があると、これまで研究されてきた。地震時に微気圧計で観測される圧力変化は気圧計が上下することによる気圧の高度変化の影響と地震動が地面を揺らすことで励起される大気の振動(動圧)や、気圧計が揺すられることによる振動(機械応答)も含まれると考えられてきた。

広帯域加速度計と微気圧計を用いてMj=3.7深さ5.2kmの地震を20km離れた地点で計測した事例では、圧力変化は上下動による気圧の高度変化よりはるかに大きく、揺れ始めは加速度波形と関係があるように見えた。そこで、地震により観測される気圧変化の原因を明らかにするため、地震を計測した時の広帯域加速度計と微気圧計を振動台に載せて鉛直方向と水平方向に振動させる実験を行った。なお、微気圧計の空気取り入れ口(ポート)に配管する際に機械的な衝撃や継手を締め付ける際のオーバートルクで内部のメカニズムを壊してしまわないようにダンパーとしてコイル状の継手付きチューブがついている。実験では、チューブを固定してチューブの振動の影響を排除し、ポートに金属で蓋をして外部から空気が流入しない状況をつくり機械応答を調べた。本発表では様々に条件を変えて行った振動実験の結果を報告する。

謝辞:東京大学地震研究所の地震計測定震動台を使わせていただきました。操作方法を教えていただいた新 谷教授に感謝いたします。

キーワード:微気圧計、震動台、気圧計が揺すられることによる機械応答

Keywords: Sensitive Microbarograph, Shake table, instrument response of microbarograph by vibration

高知県におけるインフラサウンド面的観測計画 Dense infrasound observation network planned in Kochi prefecture

- *山本 真行¹
- *Masa-yuki Yamamoto¹
- 1. 高知工科大学 システム工学群
- 1. Department of systems engineering, Kochi University of Technology

Infrasound is known as pressure waves in atmosphere with its frequency lower than the human audible limit of 20 Hz. Due to its distant propagation characteristics without large attenuation, the infrasound can be used as a remote-sensing tool for the huge scale geophysical events closely coupled with atmospheric environment. Tsunami is one of the most dangerous geophysical phenomena for human life and the Japanese originated word of TSUNAMI shows Japan is one of the most dangerous regions for tsunami disasters in the world. Kochi prefecture is located in Shikoku island and, at along the southern coast of Kochi, we have many dangerous sites of tsunami invasion once a huge earthquake happens in Nankai Trough in the pacific ocean, just near the southern coast of Japan. Infrasound observation network has currently been installing in Kochi region since 2016 for disaster prevention, taking account mainly for tsunami disasters. As for the pilot arrangement, we installed 5 sensors in Kuroshio Town in western district in Kochi pref. with a separation of about 2 and 8 km, making two-sized triangle arrays there. The infrasound sensor arrays reveal us some important feature of the detected signals coming from Typhoons and volcanic eruption of Mt. Aso in Kyushu island. Moreover, in 2017, we have a plan to install 11 more sensors in Kochi pref. to make the densest infrasound observation network in such specific small area in Japan. In this talk, we will introduce our observation design of the network and previously obtained datasets for consideration of tsunami disaster prevention.

キーワード: インフラサウンド

Keywords: Infrasound

インフラサウンドの計測に向けたマイクアレイによる低周波検出実験 Low frequency detection experiment by microphone array for infrasound measurement

- *藤本 将司1、山本 真行1
- *Masashi Fujimoto¹, Masa-yuki Yamamoto¹
- 1. 高知工科大学 システム工学群
- 1. Kochi University of Technology

1.はじめに

人間の可聴周波数は20 Hzから20 kHzと言われている。20 Hz以下の超低周波音波をインフラサウンドと言い、火山の噴火や津波、隕石の大気突入などの大規模な自然現象や、ロケットの打ち上げのような人工的爆発によって発生する。低周波であることにより空気の粘性による減衰を受けにくく、長距離伝搬する特性を有するため、リモートセンシング技術として注目されている。

高知工科大学ではこれまで、ピエゾ素子やPSD素子を用いた低コストインフラサウンドセンサの開発が行われてきた。しかし、これらのセンサはある程度の容量を持った容器に膜を張り、微小な気圧変動による膜面の膨張収縮を検出しているため、膜面の劣化によって性能が低下する問題がある。そこで我々は膜面を用いない、コンデンサマイクによるインフラサウンドの検出を提案し、実験を行なっている。

2.実験

コンデンサマイクは単体ではインフラサウンドのような低周波の検出は難しいが、マイク複数個をアレイ配置することによって低周波感度が向上する。今回はコンデンサマイク16 個を用いたマイクアレイを用意して実験を行なった。各マイク素子は2 mm厚のスチレンボードに配置し、丸ピンソケットをマイクとのコネクタとして利用することで自由に配置を変更することが可能である。A/D変換器(サンプリング周波数: 40 Hz)としてArduino UNOを用いた。

当研究室にある真空チャンバーとシリンジポンプを用いて低周波検出の実験を行なった。真空チャンバーは密閉するためのみに使用し、接続したシリンジポンプによる空気の出入りのみでチャンバー内部の気圧を微小変動させることで擬似的にインフラサウンドを発生させた。シリンジポンプは1分間に注入する容量を入力でき、それにより発生させる周波数を決定することができる。本実験では、0.1 Hz, 0.05 Hz, 0.01 Hzと周波数を変更して実験を行なった。

また、製作したマイクアレイの可聴音に対する受音性能を確認する実験も行なった。静かな部屋でスピーカーからマイクまでの距離を1,2,3,5 mと決め、音波の減衰する様子を確認した。それぞれの距離で200,150,100,75,50,40,30,20,10 Hzと順に変更しながらアンチエイリアシングフィルターを用いずに実験を行なった。

3.結果と考察

今回の実験で用いたマイクアレイの形状は、10 cm四方のスチレンボードに配置した直径約9 cmの円形と 20 cm四方のスチレンボードに配置した直径約19 cmの円形、20 cm四方に配置した中心から120°間隔で3 本のマイク列がカーブしながら伸びている形状である。低周波検出の実験では、カーブしている形状のマイクアレイでのみ0.01 Hzの低周波検出に成功した。

可聴音計測の実験では距離による音波の減衰の様子が見られたとともに、アレイ形状による減衰の違いも見られた。1~3 mまではどれも同じように減衰し、5 mでの減衰に違いが現れた。直径9 cmの円形、直径19 cmの円形、カーブ形状の順に減衰が大きくなっていた。また、大きく減衰していたのは200 Hzから20 Hzまでであることから、アレイ配置の形状による高周波をカットする効果ではないかと考えられる。特にカーブ形状での効果が大きく見られた。

4.まとめ

数回の実験を通してコンデンサマイクをアレイ配置することによってインフラサウンドの検出が可能であり、さらにアレイ配置の形状を工夫することで性能を決められる可能性が確認された。これからの実験ではマイクアレイに対して斜め方向からの音波に対する効果の検証、ノイズ対策、回路の改良を行なっていく予定である。

キーワード:インフラサウンド、マイクアレイ

Keywords: Infrasound, Microphone array

火星地表面模擬環境下における音波特性の実験的検証

Experimental verification of acoustic characteristics under simulated Martian surface environment

- *藤津 裕亮1、山本 真行1
- *Hiroaki Fujitsu¹, Masa-yuki Yamamoto¹
- 1. 高知工科大学
- 1. Kochi University of Technology

背景

2020年代に火星探査機の打ち上げが計画されており、シリーズ的な火星探査の実現が期待されている。2016年現在、火星大気中における音波観測は未だ行われていない、探査用ローバーに本研究を反映して設計・開発するマイクを搭載できれば、ダスト現象に伴う火星大気中の音の計測だけでなく、大気中の物理量の間接計測も可能になるとともに、春先の季節に発生する可能性のあるガス放出現象など最近注目され始めた火星地表面活動にもフォーカスしたリモートセンシングに応用できると期待される。

目的

火星探査機に搭載するマイク評価モデルを大型サイエンススペースチャンバー内にて稼働させ、温度条件を 除いて火星大気を模擬した状況にて分子種の違う希薄大気中の音波減衰と音速に関して実験的に測定すること を目的とする.

実験概要

火星地表面における大気条件は、 CO_2 成分が95%を占め、地表面気圧7 hPa、夜間気温-120 $^{\circ}$ Cというもので、これらの過酷環境を模した環境下で耐久試験およびインフラサウンドを含めた音波検出性能の較正試験を千葉工業大学、高知工科大学、ISAS/JAXAにて2015年度に行った、火星地表条件下での動作確認を終えたマイクを用いてISAS/JAXAの大型サイエンススペースチャンバーで火星模擬大気中での音波伝搬特性を計測した、実験条件として空気、アルゴン、二酸化炭素をそれぞれ7 hPa、70 hPaとし、空気のみ大気圧を含めた測定を行った。このチャンバーは直径約2 m、長さ4.5 mで、内部に可動アームがあり、アーム終端より奥側にスピーカーを固定設置し一定の周波数を出力、アームの可動する3 mの範囲内で長手方向に0.25 mずつ動かして測定した。音速は、チャンバー内で発生する半波長分の定在波から算出した。また、減衰は同様の手法にて、異なる圧力下で振幅値を比較し算出した。

実験結果

今回の実験では約3 m離した2台のマイク側の時間差から音速測定を目指した手法での検出管共鳴によるは定在波にかき消され算出困難と判断したため、この定在波の腹と節の位置確認に補助的に取得したデータから音速を算出した。今回、データ取得の分布が粗かったため正密な値は算出できなかったが、チャンバー内を二酸化炭素で7 hPaに設定した時、音速の理論値269.7 m/sに対し実験値では280 m/sという結果が得られた。また、アルゴンでは理論値322.1 m/sに対し実験値350 m/s、空気では同326.4 m/sに対し350 m/sとなり、これらの結果より理論値に対し8%以内の誤差で求めることができた。また、アルゴンで70 hPaと7 hPaでの音波強度を比較した場合、10 倍の圧力差であれば平均で10.41倍の振幅の差が得られた。空気のとき同条件では8.9倍の振幅差が得られた。

考察

音速の計測を行い、理論値に近い値が得られたため、同様の手法で観測点を増やすことでより正確な値を導き出すことが可能であると考えられる。また、音波減衰に関しては 動粘度 = 絶対粘度 / 密度 の式より音

速,気体,温度が同一とした場合,圧力が密度の関数となるため圧力が小さいと減衰は大きくなるという考えと一致する.

結論

マイク評価モデルを用いて火星地表面模擬環境下にて音速と音波減衰を計測した。音速は理論値に近似した値を得られたため、火星大気での音速は理論式とほぼ同一な値を得ることが可能であると考えられ、今回のマイクで測定可能であることも示された。今後は気球にマイクを搭載し、チャンバーのような境界面が無く火星大気条件に比較的近い成層圏大気中における実験を10月にスウェーデンESRANGEにて行う予定である。

キーワード:音波、火星 Keywords: Sound, Mars